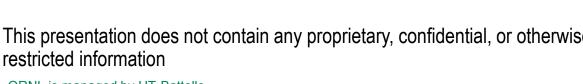
Joint Development and Coordination of Emissions Control Data and **Models (CLEERS Analysis and Coordination**)

Stuart Daw, Josh Pihl, Jae-Soon Choi, Bill Partridge, Todd Toops, Vitaly Prikhodko, Charles Finney, Will Brookshear

PI: Stuart Daw

Presenter: Josh Pihl


Oak Ridge National Laboratory

DOE Vehicle Technologies Office Annual Merit Review & Peer Evaluation Meeting June 8, 2016 Washington, DC

DOE Managers:

Ken Howden, Gurpreet Singh, Leo Breton

This presentation does not contain any proprietary, confidential, or otherwise

project ID:

Overview

Timeline

Project start date: FY2016

Project end date: FY2018

- included in ORNL response to 2015 VTO "I ab Call"
- core activity since FY2000
- supports and coordinates emissions control research
- evolves with DOE priorities and industry needs

Budget

	FY15	FY16
Coordination	\$236k	\$250k
Analysis	\$377k	\$400k

Barriers

MYPP Challenges and Barriers:

- 2.3.1.B Lack of cost-effective emission control
- 2.3.1.C Lack of modeling capability for ... emission control
- 2.3.1.E Durability (of emissions control devices)

MYPP Technical Targets:

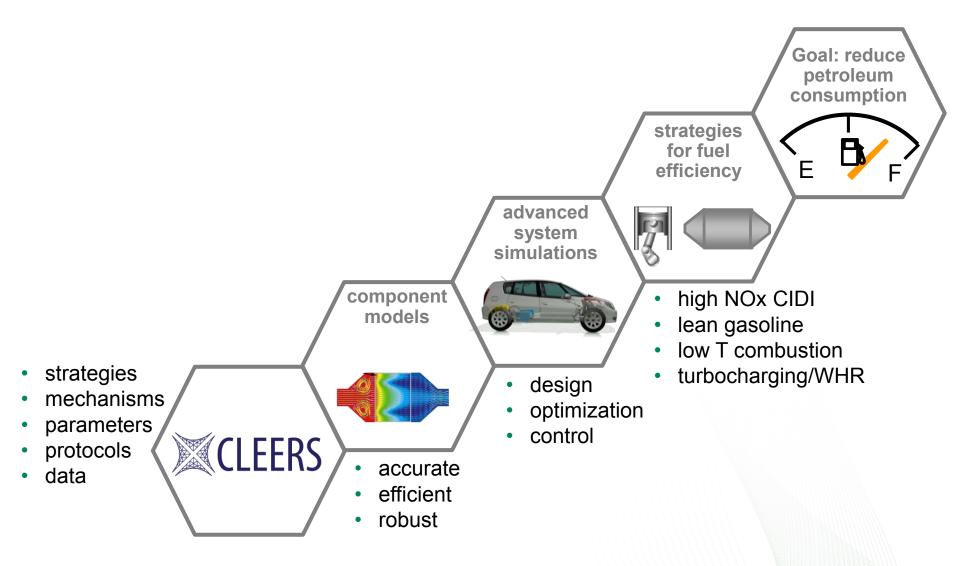
- EPA Tier 3 Emissions (original goal: Tier 2 Bin 2)
- <1% efficiency penalty due to emission control</p>

Partners

- DOE Advanced Engine Crosscut Team
- U.S.DRIVE ACEC Team
- CLEERS Focus Group members
 - 10 engine/vehicle manufacturers
 - 12 component and software suppliers
 - 11 universities
- PNNL, Politecnico di Milano, UCT Prague

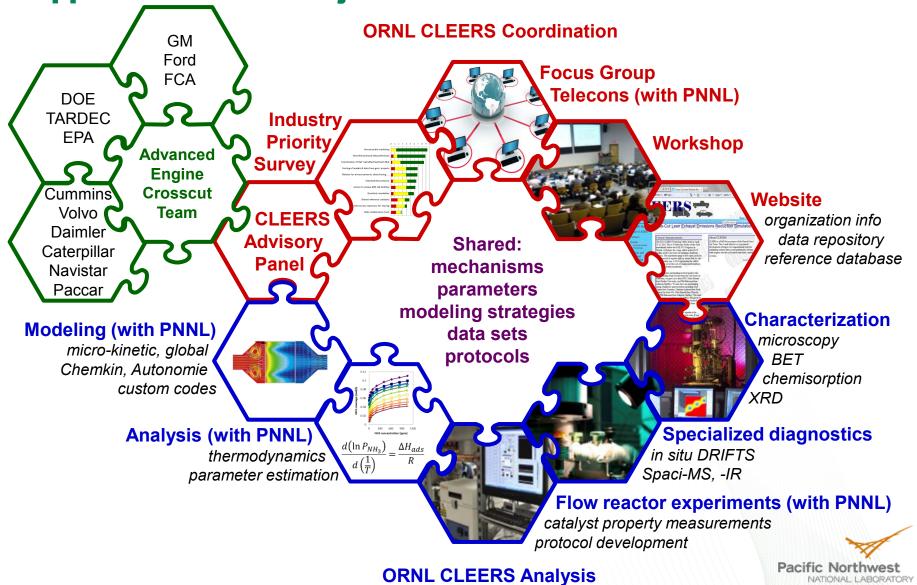
relevance

CLEERS enables the DOE VTO goals of improving efficiency while meeting emissions regulations

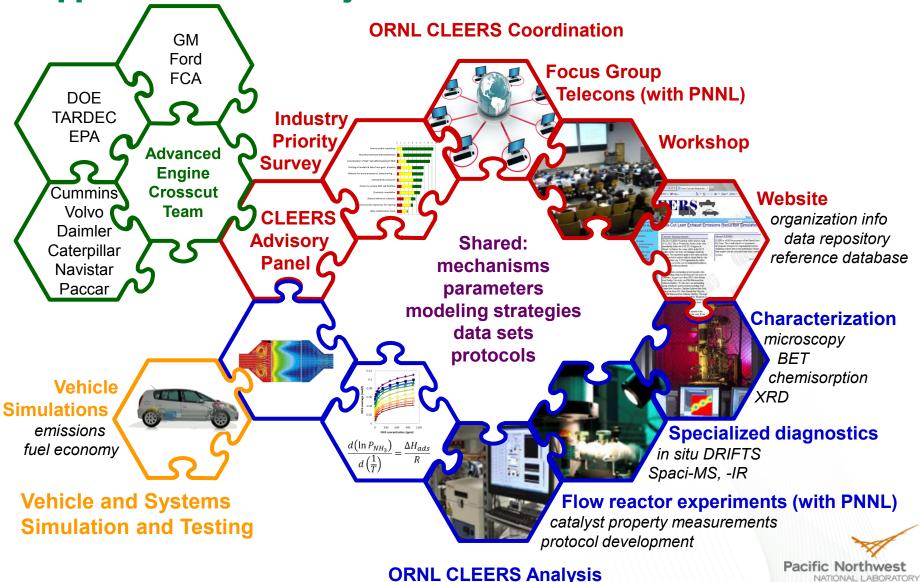


"The [VTO ACE] R&D approach is to simultaneously improve engine efficiency and meet future federal and state emissions regulations through a combination of combustion and fuels technologies that increase efficiency and minimize in-cylinder formation of emissions, and cost effective aftertreatment technologies to further reduce exhaust emissions with minimal energy penalty."

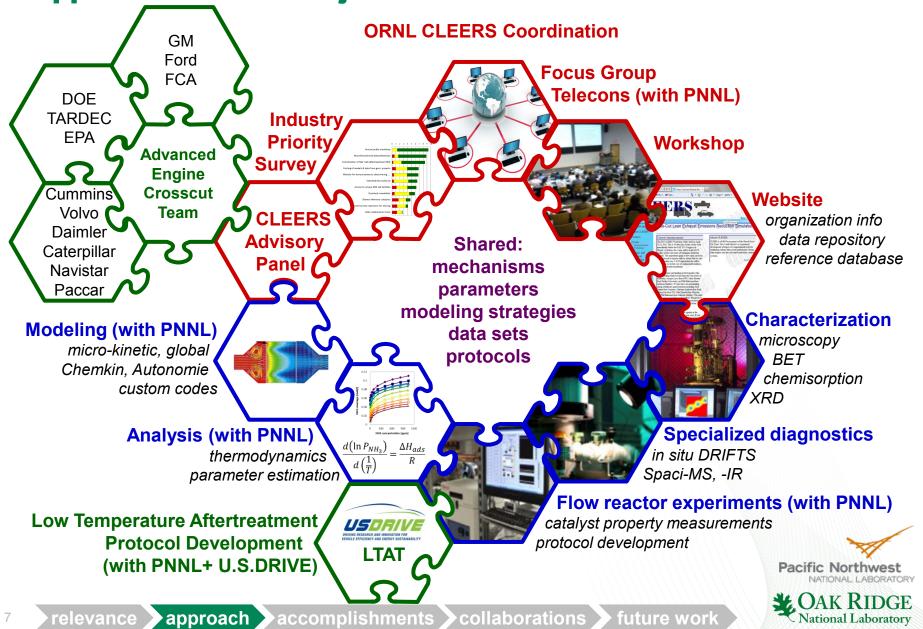
- Vehicle Technologies Office Multi-Year Program Plan
- CLEERS = Crosscut Lean (/Low-temperature) Exhaust Emissions Reduction Simulations
- CLEERS mission: accelerate the development of emissions control technologies for advanced engines by improving the accuracy of aftertreatment system simulations
- CLEERS objectives:
 - support collaborations among industry, university, national lab partners
 - develop and disseminate pre-competitive data, parameters, and models
 - gather feedback from industry on critical emissions control research needs
 - coordinate DOE National Laboratory research efforts



CLEERS provides a key stepping stone on the path to reduced petroleum consumption



ORNL coordinates CLEERS activities and conducts R&D in support of CLEERS objectives


National Laboratory

ORNL coordinates CLEERS activities and conducts R&D in support of CLEERS objectives

National Laboratory

ORNL coordinates CLEERS activities and conducts R&D in support of CLEERS objectives

Enabling Fuel Efficient Engines by Controlling Emissions (ORNL FEERC response to 2015 VTO AOP Lab Call)

ACEC Roadmap Powertrain Technologies

Low Temperature Combustion

Dilute Gasoline Combustion

Clean Diesel Combustion CLEERS (ACE022) Coordination Experiments, Analysis, Modeling Low Temperature Catalysis (ACE085)

Lean Gasoline Emissions Control (ACE033)

Emissions Control CRADA with Cummins (ACE032)

Program Management Support

Enabling Fuel Efficient Engines by Controlling Emissions (ORNL FEERC response to 2015 VTO AOP Lab Call)

ACEC Roadmap Powertrain Technologies

Low Temperature Combustion

Dilute Gasoline Combustion

Clean Diesel Combustion CLEERS (ACE022) Coordination Experiments, Analysis, Modeling

F () () () F

Provide Guidance from CLEERS Industry Priority Survey Present at CLEERS Workshop, telecons; Post data sets on CLEERS website Low Temperature Catalysis (ACE085)

Lean Gasoline Emissions Control (ACE033)

Emissions Control CRADA with Cummins (ACE032)

Enabling Fuel Efficient Engines by Controlling Emissions (ORNL FEERC response to 2015 VTO AOP Lab Call)

ACEC Roadmap Powertrain Technologies

Low Temperature Combustion

Dilute Gasoline Combustion

Clean Diesel Combustion CLEERS (ACE022) Coordination Experiments, Analysis, Modeling

Adsorption / desorption / reaction on low T traps

NH₃ formation on PGM catalysts NH₃ storage/release on SCR catalysts

NH₃ storage/release on SCR catalysts Aging effects on SCR catalysts Low Temperature Catalysis (ACE085)

Lean Gasoline Emissions Control (ACE033)

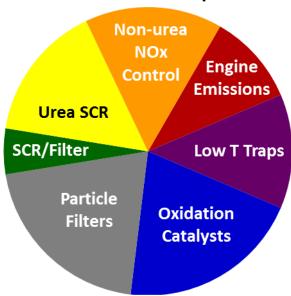
Emissions Control CRADA with Cummins (ACE032)

Milestones

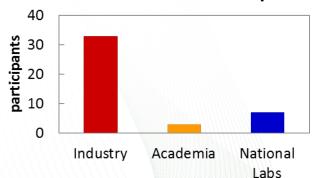
FY	Qtr	Milestone	Status
2015	2	Measure impact of catalyst aging on NH ₃ storage isotherms and model parameters	complete
2015	3	Conduct 2015 CLEERS Workshop	complete
2016	3	Host 2016 CLEERS Workshop	complete
2016	4	Complete characterization of NH ₃ storage on two primary commercial SCR catalysts (Cu-SSZ-13 & Cu-SAPO-34), publish findings, and post NH ₃ isotherm data on the CLEERS website	on schedule

CLEERS is an efficient means for communicating precompetitive information

- Workshop #19, April 6-8, 2016, Ann Arbor, MI ✓ (milestone)
 - 140 attendees: OEMs, component & software suppliers, national labs, universities, government representatives
 - 39 presentations, 24 posters
 - Record number of abstract submissions
 - Panel discussion on "Meeting Tier 3 and the potential" future impact of on-board emissions measurements and real-world/on-road emissions standards"


Focus Group teleconferences:

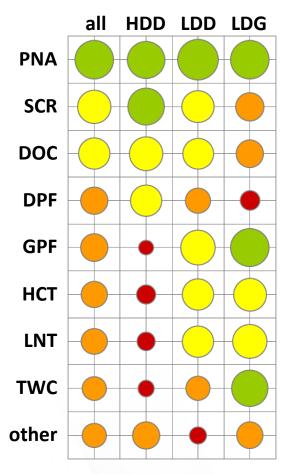
- Technical presentations of latest results
- 20-60 invited participants from around globe
 - typically >50% industry representatives


Industry communication and scoping:

- 2015 Industry Priorities Survey
 - results posted on CLEERS website with prior reports
- Assistance to U.S.DRIVE ACEC Tech Team Low Temperature Aftertreatment working group
 - protocols available on CLEERS website

2016 CLEERS Workshop **Presentation Topics**

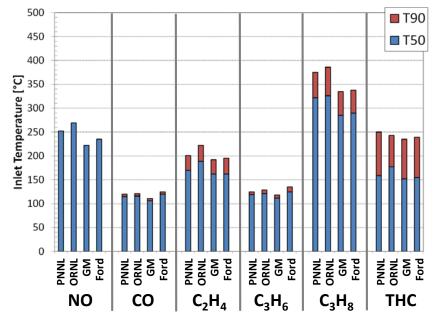
January 2016 Focus Group Teleconference Participants


future work

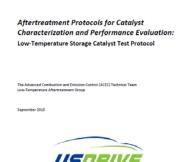
2015 Priority Survey revealed interest in a wide range of technologies, with particular emphasis on low T approaches

- Responses reveal a diversity of opinions among survey participants:
 - every technology listed in poll was ranked medium. priority or higher for at least one market segment
 - priorities vary by market segment, and each market segment has multiple high priority technologies
- PNAs generated interest across all market segments
- Two cross-cutting high priority themes emerged repeatedly:
 - new low temperature catalyst formulations
 - formation of greenhouse gas byproducts

approach

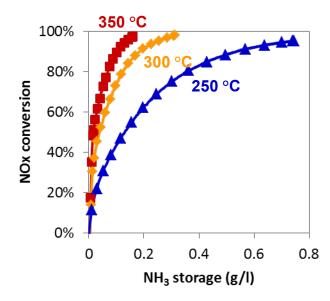

avg. score: <4 4-5 5-6 6-7 >7 0 = low10 = high

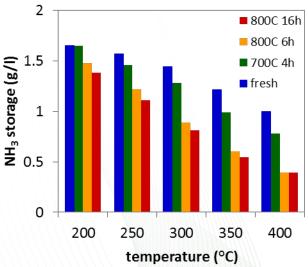
future work


Supported the U.S.DRIVE ACEC LTAT team in developing and testing experimental protocols for low T catalysts

Org.	Representatives
FCA	Craig DiMaggio
Ford	Joe Theis
GM	Se Oh Wei Li
PNNL	Ken Rappe Mark Stewart
ORNL	Jim Parks Josh Pihl
UM	Galen Fisher
DOE	Ken Howden

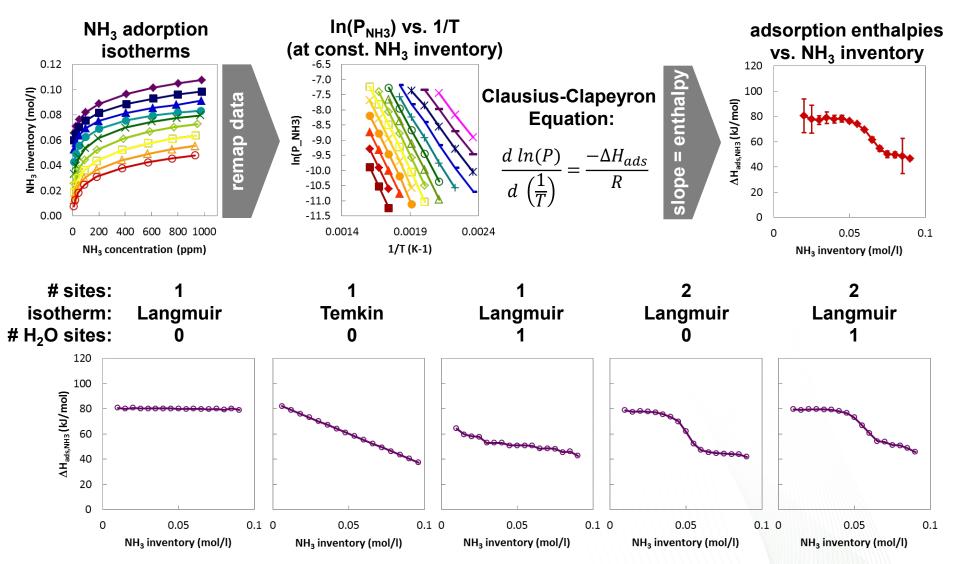
- Participated in round robin testing of OC protocol
 - evaluated impact of reactor setup
 - example: inert core upstream of catalyst has no effect
 - identified protocol revisions to improve clarity
 - shared data with members of LTAT team for comparison of reproducibility across labs
- Supported development of a trap protocol





Accurate models of NH₃ storage needed to develop high NOx conversion SCR systems

collaboration with PNNL


- Priority Survey: within heavy duty diesel market segment
 - NH₃ storage/oxidation/release: #10 of all 64 topics
 - SCR aging mechanisms & models: #4 of all 64 topics
- NH₃ inventory must be managed to maximize NOx conversion, minimize NH₃ slip, efficiently utilize urea
 - high NH₃ coverages required for high NOx conversion
 - critical for approaches based on NH₃ production/ consumption cycles (passive SCR, LNT-SCR)
 - dosing strategies often built with simulation tools
- NH₃ storage capacity varies significantly with temperature, gas composition, and catalyst age
 - models must capture these dependencies
- Challenges in current measurement & modeling strategies:
 - model uncertainty: site multiplicity, adsorption energetics
 - confounded TPD data: thermodynamics, kinetics, transport
 - resulting parameters neither global nor universal

Steady state isotherms and thermodynamic analysis isolate SCR NH₃ adsorption energetics, guide model development

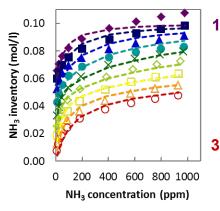
Same model structure can be applied to two different commercial urea SCR formulations (Cu-SAPO-34, Cu-SSZ-13)

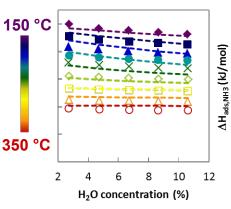
120

100

80

20


0


0.05

NH₃ inventory (mol/l)

0.1

Cu-SSZ-13 (GM Pickup Truck)

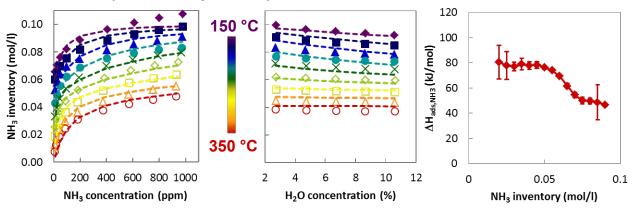
site	1	2
ω (mol/l)	0.050	0.050
K _{i,NH3,0}	1.8E-3	3.0E-5
$\Delta H_{i,NH3}$ (kJ/mol)	-80	-79
K _{i,H2O,0}		9.4E-4
$\Delta H_{i,H2O}$ (kJ/mol)		-42

- Two NH₃ storage sites
- Langmuir isotherm for both sites
 - H₂O competition (site 2 only)
- Constant ΔH_{ads} for each site

$$I_{NH_3} = \omega_1 \theta_{1,NH_3} + \omega_2 \theta_{2,NH_3}$$

$$\theta_1 = \frac{K_{1,NH_3} P_{NH_3}}{1 + K_{1,NH_3} P_{NH_3}}$$

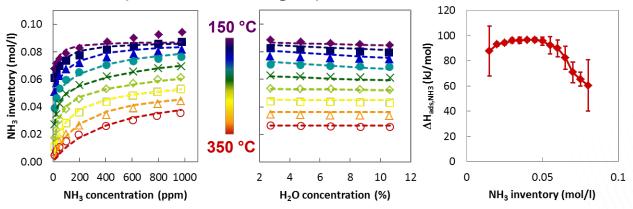
$$\theta_2 = \frac{K_{2,NH_3} P_{NH_3}}{1 + K_{2,NH_3} P_{NH_3} + K_{2,H_2O} P_{H_2O}}$$


$$K_{i,s} = K_{i,s,0} e^{-\Delta H_{i,s}/RT}$$

future work

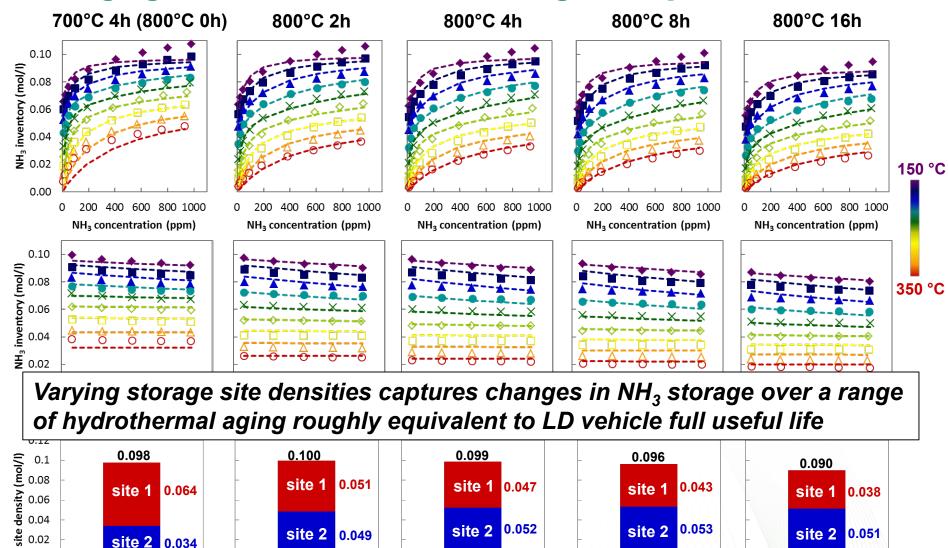
Same model structure can be applied to two different commercial urea SCR formulations (Cu-SAPO-34, Cu-SSZ-13)

Cu-SSZ-13 (GM Pickup Truck)



site	1	2
ω (mol/l)	0.050	0.050
K _{i,NH3,0}	1.8E-3	3.0E-5
$\Delta H_{i,NH3}$ (kJ/mol)	-80	-79
K _{i,H2O,0}		9.4E-4
$\Delta H_{i,H2O}$ (kJ/mol)		-42

- Isotherm shapes, H₂O dependence look very similar
- ΔH_{ads} vs. inventory indicates two distinct sites

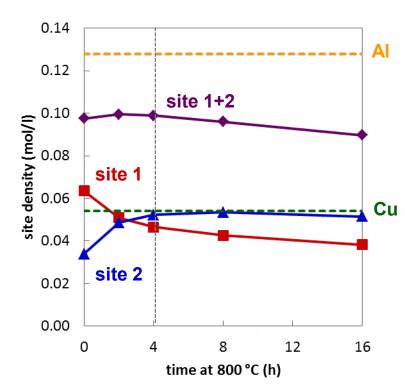

model structure works well for two different Cu zeolite SCR formulations

Cu-SAPO-34 (Cummins ISB engine) √ (milestone)

site	1	2
ω (mol/l)	0.050	0.037
K _{i,NH3,0}	2.7E-5	9.9E-8
$\Delta H_{i,NH3}$ (kJ/mol)	-95	-102
K _{i,H2O,0}		1.4E2
$\Delta H_{i,H2O}$ (kJ/mol)	<u></u>	-55
/ / / / / / / / / / MINNY		11111833

Impact of Cu-SSZ-13 hydrothermal aging captured by changing site densities while holding other parameters fixed

relevance


Changing site densities provide a method for modeling aging effects and perhaps understanding aging mechanisms

- Parameter estimation process after aging:
 - fix adsorption energetics across all steps
 - allow site densities to vary with aging
- Hydrothermal aging at 800 °C appears to occur over two distinct phases:

	aging	g NH ₃ storage site		ge site	
	time	1	2	total	
Phase I	<4 h	Û	①	\Leftrightarrow	site 1 → site 2
Phase II	>4 h	Û	\Leftrightarrow	Û	loss of site 1

- Proposed physical sites:
 - site 1: zeolite Brønsted acid sites
 - site 2: Lewis acid sites (likely Cu)

Correlating model sites with catalyst physical sites yields insights into aging mechanisms and simulation strategies

site	1	2
ω (mol/l)	f(age)	f(age)
K _{i,NH3,0}	3.1E-3	5.2E-6
$\Delta H_{i,NH3}$ (kJ/mol)	-84	-85
$K_{i,H2O,0}$		2.9E-4
$\Delta H_{i,H2O}$ (kJ/mol)		-44
		1.14667614676146761

<u>future</u> work

Collaborations

CLEERS Technology Focus Group -

Advanced Engine Crosscut Team

ACEC Tech Team

DOE VTO

HD OEMs:

Cummins

Caterpillar

Daimler Trucks

Navistar

Paccar

Volvo

LD OEMs:

FCA Ford

GM

FPA

TARDEC

Suppliers:

BASF

Johnson-Matthey

Umicore

Corning

Delphi

Eaton

Haldor Topsoe

-CLEERS Industry Survey Recipients

National Labs:

ORNL PNNL

I ANI ANL

Industry:

John Deere

Bosch

Gamma

IAV

Tenneco N2Kinetics

Emissol

Universities:

Chalmers Univ.

Michigan Technological Univ.

Pennsylvania State Univ.

Politecnico di Milano

Purdue University

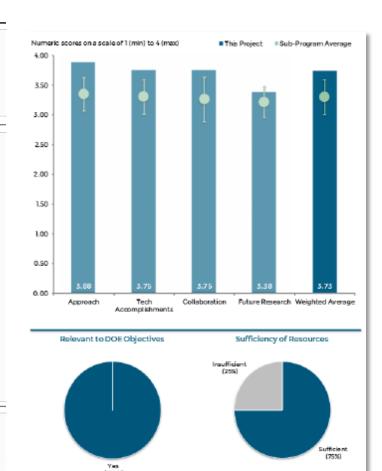
Texas A&M Univ.

UCT Prague

Univ. of Houston

Univ. of Kentucky

Univ of Notre Dame

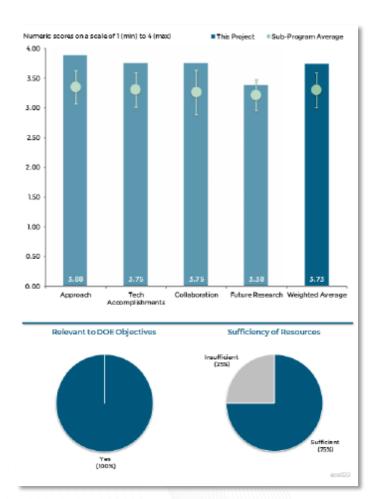

Univ. of Michigan

Univ of Wisconsin

Responses to Reviewer Comments

Reviewer Comments: Responses:

Responses to Reviewer Comments


Reviewer Comments:

Responses:

- Extend CLEERS Workshop time slots to 25 min to allow more time for discussion
- 2016 Workshop agenda extended to 3 full days to allow for 25 minute time slots
- Investigate other emissions control topics in addition to NH₃ storage capacity of SCR catalysts and N₂O from I NTs
- Investigations into both hydrocarbon traps and passive NOx adsorbers will begin in FY2016
- Start passive NOx adsorber investigations concurrently with hydrocarbon trap research

Investigate physical

- Correlations with physical sites already under way
- characteristics that lead to low energy/high energy NH₃ storage
- Future model catalyst investigations will generate more insights

sites

Remaining Challenges & Barriers/Future Work

Remaining Challenges:	Future Work:
Decreasing exhaust temperatures from higher efficiency engines and	 Continue emphasizing low T emissions control priorities in CLEERS activities and plans
advanced combustion modes.	 Identify modeling strategies and key parameters for passive adsorber devices
	 Develop CLEERS HC and NOx adsorber protocols and begin experimental characterization
 Requirements for higher NOx conversion efficiencies coupled with limited accuracy of available NH₃ SCR device models, particularly for predictions of NH₃ inventories. 	 Refine simple, accurate NH₃ storage modeling and parameter estimation strategies based on adsorption isotherms
	 Expand NH₃ storage measurements and modeling to other catalyst formulations
 Ongoing need for coordination and collaboration in developing simulation tools for next generation emissions control devices. 	Continue planning, teleconference, workshop, website, and DOE lab coordination activities

Remaining Challenges & Barriers/Future Work

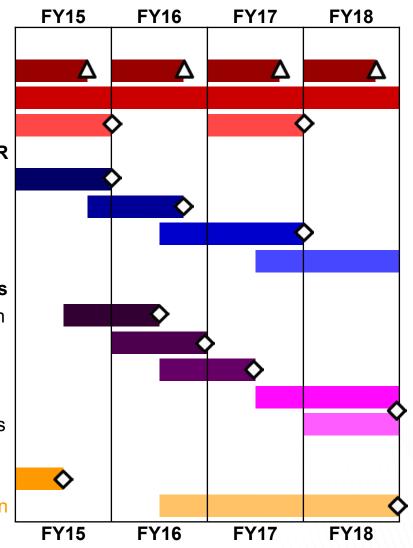
Remaining Challenges:	Future Work:
Decreasing exhaust temperatures from higher efficiency engines and advanced combustion modes.	 Continue emphasizing low T emissions control priorities in CLEERS activities and plans Identify modeling strategies and key parameters for passive adsorber devices Develop CLEERS HC and NOx adsorber
	protocols and begin experimental characterization
 Requirements for higher NOx conversion efficiencies coupled with limited accuracy of available NH₃ SCR device models, particularly for predictions of NH₃ inventories. 	 Refine simple, accurate NH₃ storage modeling and parameter estimation strategies based on adsorption isotherms
	 Expand NH₃ storage measurements and modeling to other catalyst formulations
 Ongoing need for coordination and collaboration in developing simulation tools for next generation emissions control devices. 	 Continue planning, teleconference, workshop, website, and DOE lab coordination activities

Proposed schedule for ORNL CLEERS activities includes an increasing emphasis on adsorbers for low T applications

1. Coordination

- 1.a. Workshop
- 1.b. Telecons, website
- 1.c. Priority Survey

2. NH₃ storage/release on SCR


- 2.a. commercial Cu-SSZ-13
- 2.b. commercial Cu-SAPO-34
- 2.c. model SSZ-13
- 2.d. other SCR catalysts

3. HC storage/release on traps

- 3.a. Protocol & instrumentation
- 3.b. Single HCs
- 3.c. HC mixes
- 3.d. metal ion exchange
- 3.e. zeolite structure, acid sites

4. NOx storage

- 4.a. N₂O from LNT
- 4.b. PNA adsorption/desorption

Note: schedule contingent on funding availability, DOE program needs, industry feedback

future work

Summary

Relevance

 CLEERS supports the development of accurate and robust simulation tools for the design, optimization, and control of next generation emissions control technologies, which reduce fuel use by enabling higher efficiency engine operation & advanced combustion concepts

Approach

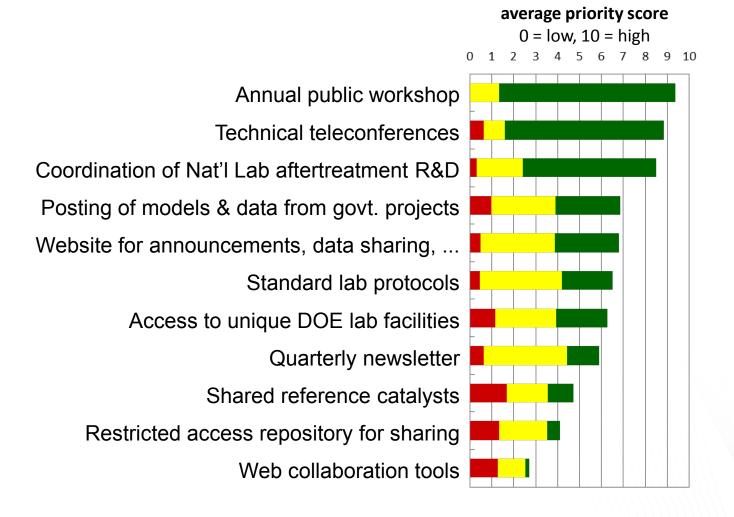
- Organized technical exchanges based on Workshops, Focus Group teleconferences, industry surveys, Crosscut team updates, pre-competitive data & models
- Multi-scale experiments and modeling of commercial catalysts under relevant conditions

Technical Accomplishments

- Well-attended Workshop and teleconferences; Crosscut Team reports; shared data and protocols; source for data and models for parallel DOE projects and industry partners
- SCR catalyst NH₃ storage model based on adsorption isotherms that accurately captures effects of gas composition, temperature, and aging for two commercial SCR formulations

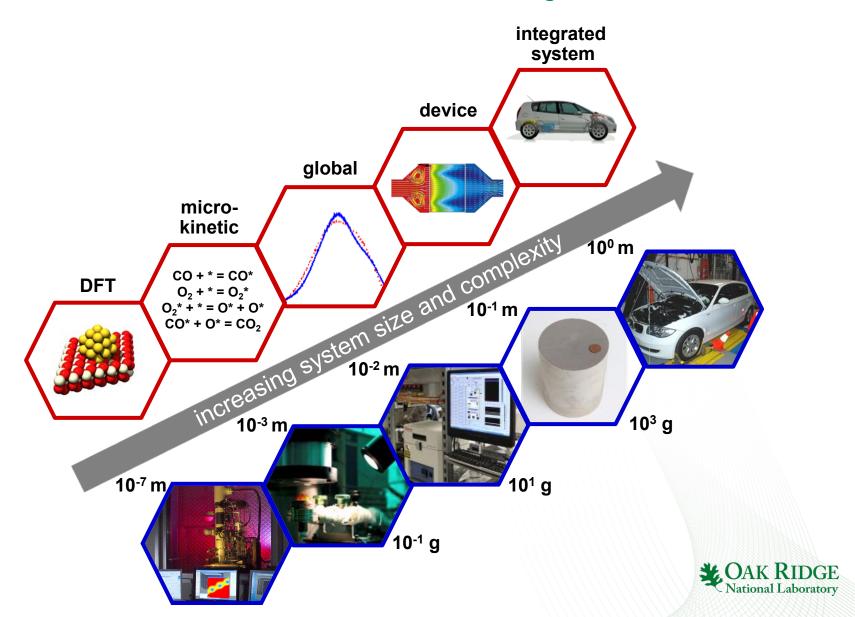
Collaborations

- PNNL; Politecnico di Milano; ICT Prague
- Collaborations among industry, universities, national labs through CLEERS organization


Future Work

- Continue coordination activities: workshop, telecons, website, priorities survey
- Initiate characterization of passive adsorber materials and protocol development

Technical Back-Up Slides


2015 Priority Survey confirmed a high level of interest in the core CLEERS organizational activities

relevance

DOE National Labs provide unique capabilities in multi-scale integration, ability to share precompetitive information across entire emission control community

Questions? Comments?

pihlja@ornl.gov

